SBIR DATA RIGHTS

Contract No.: NSF IIP-0724502

Contractor Name: Innovative Technology, Inc. (dba) Inovati

Contractor Address: PO Box 60007, Santa Barbara, CA 93160

Expiration of SBIR Data Rights Period: 5 years

The Government's rights to use, modify, reproduce, release, perform, display, or disclose technical data or computer software marked with this legend are restricted during the period shown as provided in paragraph (b)(4) of the Rights in Noncommercial Technical Data and Computer Software--Small Business Innovative Research (SBIR) Program clause contained in the above identified contract. No restrictions apply after the expiration date shown above. Any reproduction of technical data, computer software, or portions thereof marked with this legend must also reproduce the markings.
Overview

- Kinetic Metallization Process
- KM-Coating Production System (KM-PCS)
- Conformal Antenna and RF Applications
- Polymer Composite Dielectric Applications
- Polymer Coating Repairs & Applications
- Summary
Introduction to Kinetic Metallization™ (KM)
Introduction to Kinetic Metallization™ (KM)

- Metal deposition through particle impact
- Low-temperature << melting point

Sonic Mach 1 Nozzle
- High particle velocity > 750 m/s
- Pressure < 1 MPa (150 psig)
- Temperatures to 450 °C
- Powder preheater & mixer
- Powder injection at nozzle inlet
- Low noise < 75 dBA @ 1 m
- High quality coatings
Mass Loading ~ 100% gas mass flow

Kinetic Metallization™ Difference

- Potential Energy
- Powder
- Heat
- Kinetic Energy
Kinetic Metallization™ Difference

Potential Energy → Powder → Heat → Kinetic Energy

Mass Loading ~ 100% gas mass flow

Friday, June 3, 2011
Kinetic Metallization™ Difference

Gas Storage System

Powder

Heat

Kinetic Energy

Mass Loading ~ 100% gas mass flow

Friday, June 3, 2011
Kinetic Metallization™ Difference

Gas Storage System

Ultra-fine Powder Fluidizing Unit

Heat

Kinetic Energy

Mass Loading ~ 100% gas mass flow

Friday, June 3, 2011
Kinetic Metallization™ Difference

Gas Storage System → Ultra-fine Powder Fluidizing Unit → 2.5 kW Thermal Conditioning Unit < 150 psig → Kinetic Energy

Mass Loading ~ 100% gas mass flow

Friday, June 3, 2011
Kinetic Metallization™ Difference

Gas Storage System

Ultra-fine Powder Fluidizing Unit

2.5 kW Thermal Conditioning Unit < 150 psig

Sonic Deposition Nozzle with Powder Preheater & Mixer

Mass Loading ~ 100% gas mass flow
Kinetic Metallization Systems
- Low temperature & Pressure (< 150 psig)
- KM-CDS, KM-PCS, & KM-MCS
- Customers Worldwide (US, Japan, Australia, China)

KM Coatings
- RF traces (Cu & Ni) on polymers & ceramics
- Deposition of polymer coatings (e.g., PEEK, PTFE)
- Wear resistant coatings (WC-Co, WC-CoCr)
- Corrosion resistant coatings (Al-Trans®)
- Refractory bonds (Nb) for HT composites
KM-Coating Production System
Direct Write Applications-Part I
Conformal Antenna & RF Devices

Military Global SatCom Grid
KM Direct Write of Cu Patches on Doubly Curved Dielectrics
Antenna Beam Steering with 4-element Time Delays
Antenna Gain
KM Cu on RO-3003
Microstrip Transmission Lines
KM Cu on Ultem-6202 Plastic
Micrograph of KM Cu on Ultem Plastic
RF Copper Stripline Performance Characteristics

<table>
<thead>
<tr>
<th>Dielectric Material</th>
<th>Microstrip Coating</th>
<th>Dielectric Constant</th>
<th>Loss Tangent</th>
<th>Q @ ~1GHz</th>
<th>Dielectric Attenuation Factor (dB/m)</th>
<th>Conductor Attenuation Factor (dB/m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>RO-3003</td>
<td>Cu-Clad</td>
<td>3.0</td>
<td>0.0013</td>
<td>340</td>
<td>0.16</td>
<td>0.25</td>
</tr>
<tr>
<td>RO-3003</td>
<td>KM-Cu</td>
<td>3.0</td>
<td>0.0013</td>
<td>300</td>
<td>0.15</td>
<td>0.33</td>
</tr>
</tbody>
</table>
Other RF Electronic Applications

- High Temperature Antenna Materials (missiles & munitions)
- EMI Shielding of Polymer Structures
- RF Electronic Packaging
 - Brazing RF slot antenna systems
Direct Write Applications - Part II

KM Polymer Dielectric Composites

- **Thermoplastic Polymer-Based Composites**
 - Polyetherimides (Ultem) & Polyamides (Nylon)
 - Fluoroplastics - (PTFE, PVDF)
 - PolyEtherEtherKetone (PEEK)
 - Polycarbonates (Lexan) & Acrylic

- **Ceramic 2nd Phase Materials**
 - Alumina, SiC, BaTiO$_3$, Z$_2$O
 - Ferroelectric & multiferroic materials (e.g. BaTiO$_3$, PZT)
KM Dielectric Micrograph of Polymer Composite on 6061Al

KM Ultem Dielectric ~1.4-mm

6061Al Structure
KM Direct Write of Ag Electrodes on KM-PEEK Dielectric Composite
KM Silver Traces ~ 1-mm Width on PEEK Dielectric Composite
Frequency Response of KM Dielectric Composite
Direct Write-Future Applications
KM Variable Dielectric & Multiferroic

- RF & Antenna Devices
 - Micro-strip stepped impedance filters
 - Phase shifting filters
 - Magnetic tunable dielectric materials
 - Low profile & wide bandwidth antenna (30 MHz - 5 GHz)
 - Tunable dielectric ground planes
 - Piezoelectric embedded sensors
KM Polymer Composites
General Coating Applications

- Field repairs of powder coating (no post curing)
- Corrosion protection & sealants of metallic surfaces
- Wear resistance of polymer surfaces
- Bond coats for polymer and ceramic composites
- Repairs of fiber-reinforced composites
 - Leading edge of helicopter blades
Summary

- **KM Polymer-Base Coatings**
 - Conformal antenna systems
 - Tunable dielectrics for RF devices
 - Piezoelectric sensors
 - Corrosion protection & bond coats

- **KM of Polymer Composites & Metallic Electrodes**
 - Direct write of antenna and RF elements & devices
 - Polymer coating applications with no post-curing